
Unit – 3 Objects and Classes

T.Y.B.Sc. Sem – V Subject – JAVA Programming I

3.1 Introduction – Classes and Objects

3.2 Data members, methods 

3.3 Types of Constructors 

3.4 Overloading 

3.5 Packages 

3.6 Access modifier 

3.7 Inner classes 

Prof. A. P. Chaudhari (M.Sc., SET)
HOD, Department of Computer Science

SVS’s Dadasaheb Rawal College, Dondaicha



3.1 Introduction – Classes and Objects

Unit – 3 Objects and Classes

Classes:

A class is a user defined data type, it defines a new data type. Once

defined, it can be used to create objects of that type. A class definition is a

describes what pieces of information the new type holds and methods with which

that information can be manipulated, so the class is composed of fields and

methods. A field is a variable defined within a class definition that is associated with

an instance (object) of that class. A method is a set of Java statements which can

be included inside a Java class. A class with only data fields has no life. Objects

created by such a class can not respond to any massages. A class is declared by

the keyword ‘class’.

2



3.1 Introduction – Classes and Objects

Unit – 3 Objects and Classes

Syntax:- class class_name

{

variable declaration;

method declaration;

}

e.g:

class employee

{

int empid;

float salary;

}

Here class employee contains two data members empid and salary.

3



3.1 Introduction – Classes and Objects

Unit – 3 Objects and Classes

Objects:

Object is an instance (variable) of class. The data in a class is in the form

of instance variables. We can declare the instance variables exactly the same way

as we declare the local variables. These variables are also called as data

members. There are two steps to create an object from a class:

1) Declaration:

We have to specify what type (i.e. Class) the object will be. A variable

declaration with a variable name with an object type.

Syntax: class_name object_name;

Where class_name is the name of already defined class and the

object_name is a valid identifier.

4



3.1 Introduction – Classes and Objects

Unit – 3 Objects and Classes

2) Instantiation (Creating Objects):

Objects are created using the ‘new’ keyword. The ‘new’ keywords creates

an object of the specified class and returns the reference of that object.

Syntax: object_name = new class_name([arguments]);

e.g.: Let us create an object of above employee class:

employee e;

e = new employee();

Following figure shows the above process:

employee e;

e = new employee();

5

NULL

empid

salary



3.2 Data members, Methods

Unit – 3 Objects and Classes

The data members or variables defined within a class are called as

instance variables because each instance of the class (i.e. each object) contains its

own separate copy of variables. The object created by a class having only variables

cannot communicate effectively with external world.

Therefore, methods are necessary for manipulating the data contained in

the class. A Java methods is an collection of statements that are grouped together

to perform an operation. The general form of declaration od methods is:

data_type method_name(arguments_list)

{

body_of _method

}

The method declaration contains four different parts:

1) Data_type of values returned by method (data_type)

2) Name of the method (method_name)

3) The list of arguments (argument_list)

4) Body of the method 6



3.2 Data members, Methods

Unit – 3 Objects and Classes

e.g:

class employee

{

int empid;

float salary;

void getdata(int a, float b)

{

empid = a;

salary = b;

}

}

Here empid and salary are the data members of a class employee and

getdata() is the method of class. 7



3.2 Data members, Methods

Unit – 3 Objects and Classes

import java.io.*;

class book

{

String title;

float price;

void getbook(String name, float rate)

{

title = name;

price = rate;

}

void putbook()

{

System.out.println("Title: "+title);

System.out.println("Price: "+price);

}

}

class bookdemo

{

public static void main(String args[])throws IOException

{

book b1 = new book();

DataInputStream d = new DataInputStream(System.in); 8

System.out.println("Enter Title:");

String t = d.readLine();

System.out.println("Enter Price:");

float p = Float.parseFloat(d.readLine());

b1.getbook(t,p);

b1.putbook();

}

}

OutPut:

Enter Title: JAVA

Enter Price: 240

Title: JAVA

Price: 240



3.3 Types of Constructors:

Unit – 3 Objects and Classes

Constructor is a special function which has the same name as class itself.

It is automatically called when an object it created. Constructor must have no

explicit return type. Constructors may be private, protected or public. Multiple

constructors may be exist, but they must have different signatures. i.e. different

numbers and types of input parameters.

Types of Constructors:

1) Default Constructor

2) Parameterized Constructor

1) Default Constructor:

A constructor that has no parameters is known as default constructor. In

other words, when the object is created, java creates a no argument constructor

automatically known as default constructor. Default constructor provides the default

values to the object like zero (0), Null, etc. depending on that type. 9



3.3 Types of Constructors:

Unit – 3 Objects and Classes

import java.io.*;

class area

{

float pi, red, a;

area()

{

pi = 3.14f;

System.out.println("Default

Constructor executed");

}

void getred(float r)

{

red = r;

}

void cal()

{

a = pi*red*red;

System.out.println("Area is:"+a);

}

}
10

class circle

{

public static void main(String args[])

{

area a1 = new area();

a1.getred(4.5f);

a1.cal();

}

}

Output:

Default Constructor executed

Area is:63.585



3.3 Types of Constructors:

Unit – 3 Objects and Classes

import java.io.*;

class student

{

int rollno;

String name;

String std;

student()

{

std = "T.Y.B.Sc.";

}

void getdata(int rno, String title)

{

rollno = rno;

name = title;

}

11

void putdata()

{

System.out.println("Roll Number:"+rollno);

System.out.println("Name:"+name);

System.out.println("Standard:"+std);

}

}

class sinfo

{

public static void main(String args[])

{

student s1 = new student();

s1.getdata(3707,"Rohit Patil");

s1.putdata();

}

} Output:

Roll Number:3707

Name:Rohit Patil

Standard:T.Y.B.Sc.



3.3 Types of Constructors:

Unit – 3 Objects and Classes

2) Parameterized Constructor:

A constructor that has parameters or arguments is known as

parameterized constructor. It is used to provide different values to the distinct

objects. With the use of this constructor, it is possible to initialize objects with

different set of values at the time of their creation. These different set of values

initialized to objects must be passed as arguments when constructor is invoked.

import java.io.*;

class area

{

float pi, red, a;

area(float r)

{

red = r;

pi = 3.14f;

System.out.println("Default

Constructor executed");

}

12

void cal()

{

a = pi*red*red;

System.out.println("Area is:"+a);

}

}

class circle1

{

public static void main(String args[])

{

area a1 = new area(4.5f);

a1.cal();
} }



3.4 Overloading:

Unit – 3 Objects and Classes

In Java overloading allows different methods to have same name, but

different signatures where signatures can differ by number of input parameters or

type of input parameters or both. Overloading is related to compile time

polymorphism.

When we call a method the java compiler first compare the method name

then number of arguments and their data types to decide which method is to be

called.

13



3.4 Overloading:

Unit – 3 Objects and Classes

import java.io.*;

class addition
{

int add(int x, int y)
{

return(x+y);
}

float add(float x, float y)
{

return(x+y);
}

int add(int x, int y, int z)
{

return(x+y+z);
}

float add(int x, float y)
{

return(x+y);
}

float add(float x, int y)
{

return(x+y);
}

}

14

class mover

{

public static void main(String args[])

{

addition a = new addition();

System.out.println(a.add(20,30,50));

System.out.println(a.add(18.7f, 15));

System.out.println(a.add(30,25));

System.out.println(a.add(28.9f, 33.3f));

System.out.println(a.add(81, 62.5f));

}

}

Output:

100

33.7

55

62.199997

143.5



3.5 Packages:

Unit – 3 Objects and Classes

Package is called as the collection of classes and interfaces. A package

can be defined as a grouping of related or similar types of classes, interfaces and

sub packages providing access protection and namespace management.

Advantages of packages:

• Package is used to categorized the classes and interfaces so that they can be

easily maintained.

• Package provides access protection.

• Easy to locate the files.

• Reusability of code is one of the most important requirements in the software

industry. Reusability saves time, effort and also ensures consistency.

15



3.5 Packages:

Unit – 3 Objects and Classes

Types of Packages:

Packages are classified into two types-

1) Built in Packages (Java API Packages)

2) User Defined Packages

1) Built in Packages:

Java API (Application Program Interface) library provides a large number

of classes grouped into different packages according to different functionality.

Following figure shows the built in packages which are frequently used in

a Java program.

16

Java

lang io util applet awt net



3.5 Packages:

Unit – 3 Objects and Classes

1) java.lang:

It contains language support classes such as System, Tread, Exception,

etc. This package automatically imported.

2) java.io:

It contains classes for supporting input / output operations.

3) java.util:

It contains utility classes such as Vector, Arrays, Linked List, Stack, etc. It

also supports for date-time operations.

4) java.applet:

It contains classes for creating and implementing applets.

5) java.awt: (abstract window toolkit)

It contains classes using GUI such as Window, Frame, Panel, etc.

6) java.net: It contains classes for networking operations. 17



3.5 Packages:

Unit – 3 Objects and Classes

All packages contain their own classes and classes contain their own

methods. There are two ways of accessing the classes from packages. The first is

to use the fully qualified name of the class that we want to use in the program. This

is done by using a package name containing the class and then appending the

class name to it using a dot operator (.).

e.g: java.util.stack;

To import the specified class in the specified package in the source file as

follows:

import packagename.classname;

OR

import packagename.*;

e.g: import java.io.*;

18



3.5 Packages:

Unit – 3 Objects and Classes

2) User defined packages:

This packages are defined by the user. While creating a package we must

first declare the name of the package using the reserve word ‘package’. This must

be the first statement in a java source file. Then define a class just as we normally

define it.

Syntax:

package packagename;

public class classname

{

body_of_class;

}

Here, package name is mypackage1. The class demo1 is considered as

the part of this package. This code must be save as demo1.java and must be

located in directory (folder) name mypackage1.
19

e.g:

package mypackage1;

public class demo1

{

body_of_class;

}



3.5 Packages:

Unit – 3 Objects and Classes

Steps for creating a user defined package:-

Step 1: Create a new folder with package name as follows:

My Computer  C Drive  Jdk1.4  Bin  New Folder

Rename New Folder as mypackage1

Step 2: Open a command prompt;

Click on start button  search cmd  enter

Step 3: Open the editor for creating a package:

C:\user\documents>cd..

C:\user>cd..

C:\>cd jdk1.4

C:\jdk1.4>cd bin

C:\jdk1.4\bin>cd mypackage1

C:\jdk1.4\bin\mypackage1>edit 20



3.5 Packages:

Unit – 3 Objects and Classes

Step 4: Write a program for mypackage1 as follows:

package mypakage1;

public class demo1

{

public int i = 10;

public void disp1()

{

System.out.println(“Value of i is:”+i);

}

}

Step 5: Save the above program as demo1.java in mypackage1 folder.

Step 6: Exit from the editor and command editor appear.

Step 7: For creating a package mypackage2 same as above steps 1,2,3.

21



3.5 Packages:

Unit – 3 Objects and Classes

Step 8: Write a program for mypackage2 as follows:

package mypackage2;

public class demo2

{

public int j =20;

public void disp2()

{

System.out.println(“Value of j is:”+j);

}

}

Step 9: Save the above program as demo2.java in mypackage2 folder.

Step 10:Exit from editor and command prompt appear.

22



3.5 Packages:

Unit – 3 Objects and Classes

Step 11: Now, we import the above both packages in a program as follows:

(New program create in a C:\jdk1.4\bin)

import mypackage1.*;

import mypackage2.demo2;

class packdemo

{

public static void main(String args[])

{

demo1 d1 = new demo1();

d1.disp1();

demo2 d2 = new demo2();

d2.disp2();

System.out.println(“Addition of i and j:”+(d1.i+d2.j));

}

}

Output:

Value of i is: 10

Value of j is: 20

Addition of i and j: 30
23



3.6 Access Modifier:

Unit – 3 Objects and Classes

Java provides a number of access modifiers to restricts the scope of class,

constructor, variables, methods or data member. Access modifiers are also known

as visibility modifiers.

There are four types of access modifiers available in Java:

1) Default:- No modifiers are needed

2) Private:- Visible to the class only

3) Public:- Visible to the world

4) Protected:- Visible to the package and all subclass

1) Default Access Modifier: If no access specifier is used then default specifier is

used by Java compiler. Default access modifier means we do not explicitly declare

an access modifier for a class, field, method, etc. A variable or method declared

without any access modifier is available to any other class in the same package.24



3.6 Access Modifier:

Unit – 3 Objects and Classes

2) Private Access Modifier: Private access modifiers have the highest degree of

protection. Private members are not accessible from any other class. They can not

be accessed even from any subclass or any class from the same package. The

methods or data members declare as private are accessible only within the class in

which they are declared. Classes or interface cannot be declared as private.

3) Public Access Modifier: Any variable and methods which is declare as public. It

will be accessible to all the entire class and visible to all the classes outside the

class. It can be accessed from outside package also. The public access modifier is

accessible everywhere. It has the widest scope among all other modifiers.

4) Protected Access Modifier: The protected access modifier is accessible within

package and outside the package but through inheritance only. 25



3.6 Access Modifier:

Unit – 3 Objects and Classes

The protected access modifier can be applied on the data member,

methods and constructor. It cant be applied on the class. The protected members

from super class can be accessed from sub class and any other class from the

same package. But it can not be accessed from any class from another package.

26

Default Private Public Protected

Same class Yes Yes Yes Yes

Same package subclass Yes No Yes Yes

Same package non subclass Yes No Yes Yes

Different package subclass No No Yes Yes

Different package non subclass No No Yes No



3.7 Inner Classes:

Unit – 3 Objects and Classes

It is possible to define a class within another class; such classes are

known as inner or nested classes. The scope of a inner class is bounded by the

scope of enclosing class. Thus, if class B is defined within class A, then class B is

known to class A, but not outside of class A. A inner class has access to the

members, including private members of the class in which it is nested. However,

the enclosing class does not have access to the members of the inner class.

It is important to realize that class inner is known only within the scope of

class outer. The Java compiler generates an error massage if any code outside of

class outer attempts to instantiate class inner.

27



3.7 Inner Classes:

Unit – 3 Objects and Classes

import java.io.*;

class abc

{

int a = 100;

void test()

{

mno obj2 = new mno();

obj2.display();

}

class mno

{

void display()

{

System.out.println("Display outer a:"+a);

}

}

}

28

class innerdemo

{

public static void main(String args[])

{

abc obj1 = new abc();

obj1.test();

}

}

Output:

Display outer a:100


